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Abstract

Solving systems of reaction–diffusion equations in three space dimensions can be prohibitively expensive both in

terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce

storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of

nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in

a finite element method-of-lines code and tested on a set of reaction–diffusion systems. The effect of incomplete as-

sembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES

and preconditioner ILUT is studied.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

General purpose codes for solving systems of reaction–diffusion equations in three space dimensions

using the method-of-lines in time coupled with the finite element method in space (FEMOL) require sig-
nificant computational resources. Most of these resources are spent in solving large sparse linear systems

using iterative methods. These linear systems arise from a Newton or modified-Newton solver within the

temporal integrator. The same is true whether uniform or spatially adaptive grids are used. The efficiency of

these methods for solving such linear systems can be measured temporally (in terms of CPU time) and

spatially (in terms of CPU storage). A trade-off often exists between the two. For many FEMOL codes that

use iterative methods such as GMRES [21] or QMR [13] to solve the linear systems, three components play
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a critical role in determining their effectiveness: (i) the assembly and possible storage of a large, sparse

Jacobian matrix; (ii) the construction and storage of a preconditioner (e.g., an incomplete factorization of

the Jacobian from (i)) and; (iii) the computation or approximation of matrix–vector products in the iter-

ative solver where the matrix is the Jacobian.

Herein, I focus on improving (i), the assembly and storage of the Jacobian matrix, although these

changes will impact (ii) and (iii). For iterative methods the Jacobian is used only in computing matrix–

vector products and in constructing a preconditioner so only its nonzero entries are needed. This suggests

that the standard finite element full assembly (FA) algorithm can be replaced by one that computes an
‘‘incomplete’’ assembly. Incomplete assembly is analogous to incomplete factorization in that assembly

criteria mimic criteria used by, for example, the ILUT preconditioner of Saad [20]. Thus, only a fixed

number ifil of nonzero entries are stored per row and a drop tolerance itol is used to discard small values.

The resulting procedure is referred to as the incomplete assembly with thresholding (IAT) algorithm (cf.

Section 3.2). The preconditioner is then calculated from this incomplete Jacobian.

Efficient storage of the (full or incomplete) Jacobian involves special data structures [22]. The standard

FA algorithm computes local Jacobian matrices on each element and adds them into the Jacobian. In a

general-purpose code for solving time-dependent reaction–diffusion systems these data structures are based
on the mathematical structure of the equations and the spatial discretization. They are therefore created

before any entries in the matrix have been computed (cf. Section 3.1). Thus, the data structures depend on

the form of the equations, the spatial grid and the order of the elements but not on the matrix entries

themselves. This approach may result in the storage of a sizable number of zeros. For example, if the code

handles both Neumann and Dirichlet boundary conditions then either extraneous zeros are stored when

Dirichlet boundary conditions are present or the assembly algorithm is more complicated. Zero entries may

also arise if the grid is spatially adapted [18]. Additionally there may be many small (in absolute value)

entries whose locations change as the solution changes. The IAT procedure, with its data structures cal-
culated during assembly, is designed to take advantage of these small entries.

One drawback of this strategy is that, in effect, two matrices must be stored, the Jacobian for the matrix–

vector products and the preconditioner. This differs from the approach taken in DASPK. DASPK is a so-

called ‘‘matrix-free’’ algorithm [3–5] in that only the preconditioner is stored. Matrix-vector products are

approximated by a directional derivative involving additional function evaluations. Of course since pre-

conditioners are often based on incomplete factorizations of the Jacobian some assembly of the Jacobian is

typically required. In [17] it was demonstrated that though this approach requires less storage it is sig-

nificantly slower than a code that uses the Jacobian explicitly to calculate the matrix–vector products. For
this reason a version of DASPK that calculates these products using the Jacobian explicitly is used. Nu-

merous other strategies have been suggested to improve the efficiency of method-of-lines algorithms for

solving reaction–diffusion systems. These include implicit/explicit methods [1,2,16,19], mass lumping

[6,24,25] (note the limitations of lumping for nonlinear problems in the third reference) and alternating

direction-finite difference methods [7,8]. Comparison with these alternatives is beyond the scope of this

study.

The aim of this study is to determine the impact of the incomplete assembly process on FEMOL codes.

Several factors are considered including storage, CPU time and solution accuracy. Performance of tem-
poral integrators is typically measured by the number of time steps, Jacobian assemblies and function

evaluations [10,17]. Since the preconditioner may be effected by the incomplete Jacobian, its size and the

number of iterations are also examined. In order to focus on the behavior of the IAT procedure attention is

limited to the h-refinement FEMOL code of Moore [18], herein called FEDAS. In this initial effort the code

is run in nonadaptive mode. FEDAS uses the time integrator DASPK [5] which, in turn, uses the iterative

solver, GMRES with restarts [21]. I also restrict attention to one preconditioner, ILUT [20]. As noted, I

have modified DASPK so that the matrix–vector products are computed directly using the Jacobian. The

two user-selected parameters of ILUT, pfil (number of nonzero entries per row of L and U) and ptol (drop
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tolerance) are kept fixed (cf. Section 4). The insights gained from this study should prove useful for other

time integrators, iterative methods and preconditioners.

The effectiveness of the IAT algorithm is examined for three values of itol (ifil is kept fixed, cf. Section 4)

and six finite element discretizations on a test set of reaction–diffusion systems. The test set includes the

Cahn–Allen equation [11], a combustion system [15], the Brusselator model of the Belosouv–Zhabotinsky

reaction [14] and a Fitzhugh–Nagumo model of nerve conduction [9]. This set is similar to one proposed by

Estep et al. [12]. Finally, I have included a linear heat-conduction problem whose exact solution is known as

a benchmark problem.
The reaction–diffusion equations in the test set are of the form

ut ¼ r �DðuÞ þ RðuÞ; ð1Þ
DðuÞ ¼ ðD1ux;D2uy ;D3uzÞ; ð2Þ
x ¼ ðx; y; zÞ 2 X � ½X0;X1
 � ½Y0; Y1
 � ½Z0; Z1
; t 2 ð0; tf 
; ð3Þ

where u is a vector of length M and Di, i ¼ 1; 2; 3 are M �M positive definite, constant, diagonal matrices,

together with the initial conditions

uðx; 0Þ ¼ u0ðxÞ; x 2 X: ð4Þ

Dirichlet or Neumann boundary conditions are applied on each of the six boundary faces oXj,

j ¼ 1; 2; . . . ; 6, for x 2 oXj and for each unknown i ¼ 1; 2; . . . ;M . Additional restrictions must be placed on
the functions R to ensure that (1)–(4) is a well-posed parabolic system with locally isolated solutions.

The finite element Galerkin method in FEDAS uses a piecewise polynomial hierarchical spatial basis of

degree pP 1 to solve (1)–(4) (cf. Section 2). Dirichlet boundary conditions are treated as algebraic equa-
tions. The resulting system of differential-algebraic equations (DAEs) is integrated in time using the BDF

code DASPK [5] as outlined in Section 2. In Section 3, I describe the full and incomplete assembly pro-

cedures. Detailed descriptions of the problems in the reaction–diffusion test set are given in Section 4. The

effects of using incomplete assembly in FEDAS on storage, CPU time, accuracy and on the performance of

DASPK and GMRES as functions of the reaction–diffusion system, the finite element discretization and

itol are presented in Section 4. In Section 5, I conclude with some observations.
2. Discretization

The FEMOL code FEDAS [18] discretizes in space using the finite element method and integrates the

resulting differential system in time using DASPK. DASPK uses a modified-Newton method with GMRES

as the linear system solver. As a preconditioner I am using ILUT.

The Galerkin form of (1)–(4) together with, for simplicity, Dirichlet boundary conditions, consists of

determining uðx; tÞ 2 H 1
EðXÞ � ðt > 0Þ such that

ðut; vÞ � ðR; vÞ þ ðD;rvÞ ¼ 0 8v 2 H 1
0 ; t > 0;

ðu; vÞ ¼ ðu0; vÞ 8v 2 H 1
0 ; t ¼ 0;

ð5Þ

where

ðu; vÞ ¼
Z

X
uTvdx: ð6Þ
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As usual, the Sobolev space H 1ðXÞ consists of functions having square integrable first derivatives. The
subscripts E and 0 further restrict functions to satisfy the Dirichlet boundary conditions and homogeneous
versions thereof, respectively.

Introduce partitions

Xx � fX0 ¼ x0 < x1 < � � � < xN ¼ X1g; Xy � fY0 ¼ y0 < y1 < � � � < yN ¼ Y1g;
Xz � fZ0 ¼ z0 < z1 < � � � < zN ¼ Z1g; ð7Þ

to divide X into Nelem � N 3 elements thus, forming a grid DX ¼ Xx � Xy � Xz and approximate H 1ðXÞ by a
finite-dimensional subspace SDX;p of piecewise polynomials of degree p, 16 p6 6. Consider the finite element
approximation Uðx; tÞ 2 SDX;p

E of uðx; tÞ 2 H 1
E having the form

Uðx; tÞ ¼
XNnode
i¼1

NiðxÞUN
i ðtÞ þ

XNedge
i¼1

Xp

j¼2
Ei;jðxÞUE

i;jðtÞ þ
XNface
i¼1

Xp

j¼4

Xj�2
k¼2

Fi;j;kðxÞUF
i;j;kðtÞ; ð8Þ

where Nnode, Nedge and Nface are the number of nodes, edges and faces, respectively. The nodes, edges, faces
and elements of DX are referred to as modes. The nodal basis functions NiðxÞ are the standard trilinear basis
functions. The edge- and face-based basis functions, Ei;jðxÞ and Fi;j;kðxÞ, respectively, are given in [23].
Together with the nodal basis functions they comprise a hierarchical basis for SDX;p.

I approximate v by V 2 SDX;p
0 in a similar manner. Then replacing u and v in (5) by U and V, Uðx; tÞ is the

solution of the differential system

ðUt;VÞ � ðR;VÞ þ ðD;rVÞ ¼ 0 8V 2 SDX;p
0 ; t > 0;

ðU;VÞ ¼ ðu0;VÞ 8V 2 SDX;p
0 ; t ¼ 0;

ð9Þ

together with the algebraic equations arising from interpolating the Dirichlet boundary conditions. Inte-

grals in (9) are approximated by using tensor-product formulas of one-dimensional Gauss-quadrature

rules.

Explicit utilization of (8) reveals that (9) has the form

gð _UU;U; tÞ ¼ 0; ð10Þ

together with initial conditions where U is a vector of the Galerkin coordinates UN
i , U

E
i;j and UF

i;j;k (in x–y–z-
order from ðX0; Y0; Z0Þ to ðX1; Y1; Z1Þ). I integrate (10) using DASPK [5]. DASPK uses GMRES [21] to solve
the linear systems arising from the modified-Newton method. A typical modified-Newton step in DASPK

has the form

JDUm ¼ �cgðaUm þH;Um; tÞ; ð11Þ

where

J ¼ a
og

o _UU
þ og

oU
ð12Þ

is the Jacobian matrix,H is the history vector, and a is a parameter that depends on the step size and order
of the method. The parameter c allows the same Jacobian to be used over several time steps of different sizes
provided the difference is not too large [3].

To accelerate the convergence of GMRES I use the incomplete LU factorization with thresholding

(ILUT) algorithm of Saad [20]. This preconditioner is controlled by two parameters, a drop tolerance ptol

(‘‘small’’ elements are dropped) and a maximum row fill-in pfil for both L and U [20,22].
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3. Assembly procedures

The FA and IAT assembly algorithms are incorporated in FEDAS. Both algorithms take advantage of

the data structures used by the adaptive code. Three basic data structures are employed in FEDAS, an

octree for storing the grid, mode-connectivity trees (recall that a mode is an element, face, edge or node)

for storing information about the elements and lists of modes. The grid, DX is obtained by recursive bi-

section in each direction beginning with X. Thus DX is an octree with X as the root. The mode-connectivity
trees are a series of one-way pointers from elements (the roots) to their faces, from faces to their edges and
finally from edges to their nodes. Separate lists of elements, faces, edges and nodes form the third basic

data structure.

3.1. Full finite element assembly

The choice of grid DX, basis functions Ni, Ei;j and Fi;j;k and structural form of R and D determine that

most of the elements of J are zero. These zeros entries are referred to as the structural zeros of J while the

remaining entries are said to be structurally nonzero and are stored in compressed sparse row (CSR) format

[22]. In addition to the storage for J, two integer arrays, IA and JA, are used to store row and column

information, respectively. The arrays IA and JA are computed before any assembly of J begins. There are

several reasons for doing this. First IA and JA can be constructed once before time integration begins.

Second, since IA and JA are already computed it is easy to assemble the local element matrices into J.
Assembling element-by-element minimizes the number of times certain computations, such as evaluating

the solution at the quadrature points on each element, must be performed. Thus, IA and JA are determined

by the structure of the equations and the grid, including the basis order on each element and not by the

actual values of J. The standard finite element procedure (FA) used herein for assembling J takes place in

two steps. The first step involves calculating the portion of J associated with each element and assembling

them element-by-element. After this step the boundary conditions are taken into account. This two-step

process significantly reduces the complexity of the code, especially if spatial adaptivity is implemented (as is

done in FEDAS). For higher-order elements some of the structural nonzero entries of J are small due to
interactions between basis functions of different degrees and the partial differential equations being solved.

The location of these small entries may change with changes in the solution. Additionally, Dirichlet

boundary conditions, imposed in the second step of assembly may also result in a sizable number of zero

entries present in the structural nonzero portion of the Jacobian. Since IA and JA are precomputed these

entries are stored.

3.2. Incomplete assembly with thresholding

An alternative approach is to use incomplete assembly with thresholding. There are significant differ-

ences between the IAT and the FA assembly procedures. Although the same CSR format is used to store

the Jacobian, the sparse storage vectors IA and JA are computed dynamically as the matrix is assembled.

Each time a new Jacobian is needed IA and JA are regenerated; thus, they change as the solution changes.
Dynamic assembly is accomplished by assembling the matrix mode-by-mode rather than element-by-

element.

Mode-by-mode assembly requires few changes to the element-by-element code used in FA. Four ad-

ditional data structures are needed. One is a linked list of the finite element modes in order (the natural

ordering described in Section 2 is chosen). The other three are lists that link modes (one each for faces,

edges and nodes) to an element to which they belong. These lists are computed before integrating in time.

For each mode m, neighbor information from the octree is then used to determine the remaining elements

that contain it. Assembly is done over these elements with the test functions restricted to the current mode.
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The result is an r � c matrix Jm where r is equal to the number of basis functions associated with the mode
m times M . After assembling Jm each of its rows Jmði; 1 : cÞ, i, i ¼ 1; 2; . . . ; r is processed as follows. The
elements of the row are sorted by size as in ILUT [20]. The first ifil entries in the sorted row that satisfy

jJmði; jÞj
jJmði; 1 : cÞj1

> itol; ð13Þ

are assembled into J, and IA and JA are updated appropriately.

The cost, in CPU time, of an incomplete assembly is more expensive than a full assembly for three

reasons. First the incomplete algorithm requires that IA and JA must be recomputed every time a new

Jacobian is needed. To determine the appropriate elements to keep every entry in the full assembly Jacobian

must be computed. Finally mode-by-mode assembly involves redundant calculations. However, assembly
cost for IAT is independent of itol. Cost savings come in computing the matrix–vector products, where

CPU time decreases as itol increases, and, possibly, in obtaining and using the preconditioner.
4. Reaction–diffusion test set and results

Computational results for five problems are used to study the effect of itol on the performance of

FEDAS. In addition to the FA algorithm, the IAT algorithm with three values of itol is considered: 10�10

(IAT10); 10�7 (IAT7) and 10�4 (IAT4). The corresponding codes are referred to as FEDAS–FA, FEDAS–

IAT10, FEDAS–IAT7 and FEDAS–IAT4, respectively, while FEDAS–IAT refers more generally to any

of the latter three. In all cases ifil¼ 20,000, pfil¼ 100, ptol ¼ 10�4. With these parameter values all of the
preconditioners in the examples below (not surprisingly) use less than 100% of the space available. In most

cases the storage for the preconditioner ranges between 85% and 95% of the storage available depending

on the problem and discretization. The absolute and relative error tolerances for DASPK are kept fixed at

10�6. The maximum allowable dimension of the Krylov space for GMRES in DASPK is set at 10.

GMRES restarts only occur when p ¼ 6 and are only significant in Example 5. Thus, in almost all cases
fewer than 10 iterations per Newton step are needed. The examples are solved using uniform grids with

p ¼ 4; 5; 6 and N ¼ 8; 16. All computations are performed in double precision on a Compaq Alphastation
667 MHz DS20 with 4GB RAM.

Determining the impact of IAT on FEDAS is complicated by the relationship between itol, GMRES and

DASPK. DASPK does not depend continuously on itol since small changes in the latter may lead to

dramatic changes in the former. This is partly due to the order and time step selection strategies in DASPK,

e.g., method orders must be integers and time steps increase only by doubling, and partly on the linear and

nonlinear convergence criteria. This, in turn, effects the number of Jacobian assemblies, function evalua-
tions and the number of time steps. Nevertheless, as is demonstrated below, some general trends can be

observed.

For each example the size of the preconditioner and the Jacobian is studied as a function of t and as a
function of the assembly procedure. The effect of the assembly procedures on the CPU time and the so-

lution accuracy is also considered. Since for all but the first problem the true solution is not known the

difference between the solution obtained using the full assembly and each of the incomplete assembly

routines is examined. Solutions at a fixed time obtained by FEDAS–FA with p ¼ 4 and N ¼ 16 serve to
highlight the spatial complexity of the nonlinear problems. The impact of IAT on DASPK is investigated in
the typical way [10,17] by measuring the number of Jacobian assemblies, function evaluations and time

steps used by the temporal integrator. Finally, I examine the total number of GMRES iterations, the

number of GMRES iterations per time step and the number of GMRES restarts to determine IAT�s effect
on the iterative solver.
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Example 1. Consider the linear heat conduction problem

ut ¼ Duþ Rðx; tÞ; x 2 X � ½0; 1
3; t > 0; ð14Þ

where Rðx; tÞ and the initial and Dirichlet boundary conditions are chosen so that the solution is

uðx; tÞ ¼ tanhð5ðxþ y þ z� t � 0:5ÞÞ: ð15Þ

Although (14) is not a reaction–diffusion equation it serves as a benchmark since the exact solution is

known. I solve (14) on 0 < t6 4. The solution approximates a planar wave that propagates across X from
ð0; 0; 0Þ to ð1; 1; 1Þ leaving at t � 3. Thus, from 36 t6 4, u � �1 throughout X.

In Fig. 1 the CPU time as a function of t is plotted for the discretizations p ¼ 6 and N ¼ 8; 16 (the other
discretizations are comparable). As in several of the examples considerable time is consumed by DASPK in

its initial phase as it selects the correct order and stepsize. During this phase the stepsize and order are

typically changing at every step. Thus, a new Jacobian and preconditioner must be computed at each step

resulting in a significant cost in CPU time, especially when using IAT. After the initial phase the CPU time
grows slowly except when a new Jacobian and preconditioner are needed when there is a jump in the CPU

time. Clearly in this example the cost of assembly and factorization of the Jacobian represents a sizable

portion of the total CPU time. For each discretization the number of Jacobian assemblies is the same

regardless of the assembly procedure (the performance of DASPK is essentially independent of assembly

method for this example). The difference in factorization time between FEDAS–FA and FEDAS–IAT7 is

less than 0.2% of the total time when p ¼ 6 and N ¼ 16 suggesting that when the preconditioners are
Fig. 1. The CPU time (above) and error in H 1 (below) in solving Example 1 with p ¼ 6 and N ¼ 8; 16 using FEDAS–FA ð}Þ,
FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ.
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comparable in size they are also comparable in cost. Thus, since FA is the cheapest, per assembly, FEDAS–

FA has the fastest time. The gap in CPU time between FEDAS–FA and FEDAS–IAT closes as p and N
increase. On the coarsest grid FEDAS–FA is 26% faster than FEDAS–IAT for all itol while on the finest
grid FEDAS–FA is 11% faster than FEDAS–IAT10 and FEDAS–IAT7 and only 6% faster than FEDAS–

IAT4.

The errors in H 1 are also shown in Fig. 1 for the same discretizations. Once the ‘‘wave’’ has left the

region the errors decrease dramatically. For all p when N ¼ 8 the errors exhibited the highly oscillatory
behavior observed in Fig. 1. This is due to inadequate spatial discretization, i.e., the same behavior is
observed in the interpolant error as a function of t (the time step behavior is smooth). What is important is
that incomplete assembly has almost no impact on the error.

In Fig. 2 the sizes of the Jacobian and the preconditioner are shown for all discretizations. When p > 4
more space is used in storing the FA Jacobian than is used in storing its preconditioner. On the other hand

the Jacobians produced by IAT4, IAT7 and IAT10 are smaller than their respective preconditioners. Thus,

incomplete assembly leads to a significant improvement in storage efficiency.

With the exception of FEDAS–IAT4 the changing nature of the solution is not reflected in either the size

of the preconditioner or the Jacobian, even after the wave has left the domain. The Jacobians produced by
FEDAS–IAT4 experience a modest decrease in size when t > 3. The reason is as follows. Although the mass
and stiffness matrices are fixed throughout the computation the entries in the Jacobian depend on the time

step via (12). When t > 3 the time step increases making the stiffness matrix a more important component
of the Jacobian. Since the stiffness matrix has a larger number of smaller (in absolute value) values than the

mass matrix the storage decreases. This decrease shows up first in FEDAS–IAT4.
Fig. 2. The size of the arrays for storing the Jacobian (dotted line) and preconditioner (solid line) using FEDAS–FA ð}Þ, FEDAS–
IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ for p ¼ 4; 5; 6 and N ¼ 8; 16 in solving Example 1.
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The total number of GMRES iterations is identical for FEDAS–IAT10 and FEDAS–IAT7. FEDAS–

FA differs from them by at most 1%. FEDAS–IAT4 differs by less than 1% for all but the finest discret-

izations where it uses 9% less (cf. Fig. 3). Plots of the number of GMRES iterations per time step are

displayed in Fig. 3 for p ¼ 5; 6 and N ¼ 16. The other discretizations yield similar results. There appears to
be no correlation between the iteration behavior, the discretization and the performance of DASPK (see

above) except for t > 3:5 when the number of iterations per step decreases. No GMRES restarts are used on
any runs.

Example 2. Consider the Cahn–Allen equation [11]

ut ¼ �1Duþ u� u3; x 2 X � ½0; 1
3; t > 0

uðx; 0Þ ¼ ðxð1� xÞyð1� yÞzð1� zÞÞ2 � 0:00014x 2 X;

ru � nðx; tÞ ¼ 0; x 2 oX;

ð16Þ

where � ¼ 1:0� 10�4. The equation has three constant steady states, u ¼ 0;�1. Solution behavior can be
characterized by two time frames. During the first the solution quickly generates regions where the solution

is either 1 or �1 separated by sharp interfaces (cf. Fig. 5). The interfaces move transcendentally slowly and
annihilate each other during the second time frame leading to either u ¼ �1 or u ¼ 1 throughout [11]. With
the initial conditions in (16) after the first time frame u ¼ 1 inside a small sphere centered at ð0:5; 0:5; 0:5Þ,
u ¼ �1 in the rest of the domain with a sharp interface between the two. At a significantly later time the
solution undergoes a rapid transition to u ¼ �1 throughout X.

I solve (16) on 0 < t6 106. Solution profiles of u as a function of t at x ¼ ð0:5; 0:5; 0:5Þ, obtained by
FEDAS–FA, are shown in the upper portion of Fig. 4 when p ¼ 6 and N ¼ 8; 16 (the results for the other
discretizations are comparable). The corresponding errors e obtained by taking the difference between the
full assembly solution and each of the incomplete assembly solutions are displayed at the bottom of Fig. 4.
Solution accuracy is independent of the assembly procedure used, except at one time. The difference is

larger for the finer discretization and for FEDAS–IAT7 and FEDAS–IAT4. For all discretizations the

computed solution has an overshoot before reaching steady state, although the size of the overshoot de-

creases as the grid is refined. The solution at t ¼ 94:4 obtained by FEDAS–FA with p ¼ 4 and N ¼ 16 is
shown in Fig. 5. The sharp interface between the spheres can clearly be seen.
Fig. 3. The number of GMRES iterations per time step for FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–
IAT4 ðþÞ with p ¼ 5; 6 and N ¼ 16 in solving Example 1.



Fig. 4. The solution u (above) at (0.5,0.5,0.5) when using FEDAS–FA ð}Þ, and the corresponding differences e (below) between
FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ with p ¼ 6 and N ¼ 8; 16 in solving Example 2.

Fig. 5. The solution u at t ¼ 94:4 when using FEDAS–FA with p ¼ 4 and N ¼ 16 in solving Example 2.

P.K. Moore / Journal of Computational Physics 189 (2003) 130–158 139



140 P.K. Moore / Journal of Computational Physics 189 (2003) 130–158
Fig. 6 shows the CPU time for all discretizations and assembly procedures. Most of the CPU time is

consumed between the time the interface is formed and the steady state, u ¼ �1, is reached. In all but the
finest discretization FEDAS–FA has the fastest run times. However, the difference between the FEDAS–

FA and FEDAS–IAT is modest (a maximum of 26% faster on the coarsest grid) and decreases as p in-
creases. When p ¼ 6 and N ¼ 16 FEDAS–IAT4 runs 1% faster than FEDAS–FA. From the data in Tables
1 and 2 FEDAS–IAT4 uses more function evaluations and GMRES iterations but fewer time steps and

Jacobian assemblies than FEDAS–FA at this discretization. Since the results in Example 1 show that

Jacobian assembly is a sizable contributor to the overall CPU time and that the difference in time in ob-
taining the preconditioner is insignificant (when the preconditioners are comparable in size, cf. Fig. 7) the

difference in the number of Jacobian assemblies is the likely explanation for the superior CPU time of

FEDAS–IAT4. This is also borne out by noting that FEDAS–IAT10 is at least 11% slower than FEDAS–

FA for all discretizations. As seen in Tables 1 and 2 FEDAS–FA and FEDAS–IAT10 run almost iden-

tically. From Fig. 7 it follows that the Jacobians computed by FEDAS–IAT10 are noticeably smaller than

those computed by FEDAS–FA over much of the time interval while the preconditioners are comparable in

size. Therefore the overall cost of matrix–vector products in FEDAS–IAT10 should be less than FEDAS–

FA (cf. Example 5). Thus, slower assembly time for IAT10 is the likely explanation for the time difference.
Storage usage for each Jacobian and its preconditioner is presented in Fig. 7. The FA Jacobian requires

less storage than its preconditioner when p < 6 and more when p ¼ 6. Assembly procedures and changes in
the solution have only a marginal impact on the size of the preconditioners. On the other hand the amount

of storage for the IAT Jacobians does depend on the solution behavior, increasing, sometimes dramatically,

during times when the the solution is changing rapidly. In the case of FEDAS–IAT10 Jacobian storage

approaches that of FEDAS–FA between the formation of the interface and convergence to steady state.
Fig. 6. The CPU time in solving Example 2 with p ¼ 4; 5; 6 and N ¼ 8; 16 using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7
ð�Þ and FEDAS–IAT4 ðþÞ.



Table 1

The number of Jacobian assemblies (JAC), function evaluations (FNC) and time steps (TS) used by FEDAS–FA, FEDAS–IAT10,

FEDAS–IAT7 and FEDAS–IAT4 in solving Example 2

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

JAC FNC TS JAC FNC TS JAC FNC TS JAC FNC TS

4 8 37 929 634 37 939 632 39 885 617 39 888 624

4 16 35 901 492 35 901 492 35 901 492 34 898 493

5 8 42 817 506 42 827 506 42 816 506 42 780 507

5 16 44 845 494 44 845 494 44 845 494 46 837 471

6 8 41 892 595 41 845 563 38 897 614 38 896 604

6 16 42 841 501 42 843 503 39 833 486 36 922 475

Table 2

The total number of GMRES iterations (restarts) used by FEDAS–FA, FEDAS–IAT10, FEDAS–IAT7 and FEDAS–IAT4 in solving

Example 2

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

4 8 2695 (0) 2727 (0) 2547 (0) 2562 (0)

4 16 2697 (0) 2700 (0) 2698 (0) 2694 (0)

5 8 3877 (0) 3956 (0) 3897 (0) 3742 (0)

5 16 3499 (0) 3487(0) 3494 (0) 3515 (0)

6 8 7373 (20) 7031 (105) 7594 (100) 7548 (95)

6 16 4859 (11) 4826 (10) 4765 (10) 5334 (1)

Fig. 7. The size of the arrays for storing the Jacobian (dotted line) and preconditioner (solid line) using FEDAS–FA ð}Þ, FEDAS–
IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ for p ¼ 4; 5; 6 and N ¼ 8; 16 in solving Example 2.
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FEDAS–IAT4 uses the least storage throughout and is least effected by the changes in the solution. For

most of the computation the IAT Jacobians use significantly less storage than the FA Jacobians and all

preconditioners.

The effects on DASPK and GMRES of using the IAT algorithms are presented in Tables 1 and 2.

DASPK and GMRES operate almost identically in FEDAS–FA and FEDAS–IAT10. Comparable per-

formance is observed in FEDAS–IAT7 when p < 6 but fewer Jacobian assemblies are needed when p ¼ 6.
As N increases the number of time steps decreases and, if p > 4, so do the number of GMRES iterations. As
p increases the number of GMRES iterations increases (the maximum number of iterations per step also
increases with increasing p). GMRES restarts play a role only when p ¼ 6 and are only significant when
N ¼ 8. In this case the FEDAS–IAT algorithms require more.
As a representative case the number of GMRES iterations per time step for all assembly routines and

p ¼ 6 and N ¼ 16 is displayed in Fig. 8. The top graph plots the data over the whole time interval while the
graph on the bottom highlights ½5; 300
. The number of iterations oscillates rapidly as the interface is
forming and during the transition to the single steady state. Relative maxima occur at these two critical

times. Once the steady state is reached the number of iterations per step drops to one. The time step history

shown in Fig. 9 for FEDAS–FA with p ¼ 6 and N ¼ 16 demonstrates that though the number of GMRES
iterations per step has periods of rapid oscillation the time steps do not (results for other discretizations and

assembly routines are comparable).
Fig. 8. The number of GMRES iterations per time step for FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–
IAT4 ðþÞ with p ¼ 6 and N ¼ 16 in solving Example 2 on ð0; 106
 (top) and on ½5; 300
 (bottom).



Fig. 9. The time steps for FEDAS–FA with p ¼ 6 and N ¼ 16 for Example 2.
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Example 3. Consider the combustion problem [15]

ct ¼ Dc� Dce�d=T ;

LTt ¼ DT þ aDce�d=T ; x 2 X � ½0; 1
3; t > 0;

cðx; 0Þ ¼ T ðx; 0Þ ¼ 1; x 2 X;

rc � nðx; tÞ ¼ rT � nðx; tÞ ¼ 0; x ¼ 0; y ¼ 0 and z ¼ 0; t > 0;

cðx; tÞ ¼ T ðx; tÞ ¼ 1; x ¼ 1; y ¼ 1; and z ¼ 1:

ð17Þ

The variables c and T represent the concentration and temperature of a reacting mixture, respectively, a is
the heat release, L is the Lewis number, D ¼ Red=ad is the Damkohler number, d is the activation energy
and R is the reaction rate. System (17) is solved with a ¼ 1, L ¼ 0:9, d ¼ 20 and R ¼ 5. The temperature
initially increases slowly with a hot spot forming at the origin. At a finite time, ignition occurs and the

temperature at the origin jumps from near unity to approximately 1þ a while the concentration goes to 0.
A sharp reaction front (cf. Fig. 11) forms and propagates rapidly towards the boundary faces x ¼ 1, y ¼ 1
and z ¼ 1 where boundary layers develop. The solution T , obtained by FEDAS–FA, as a function of t at
x ¼ ð0:25; 0:25; 0:25Þ and ð0:75; 0:75; 0:75Þ is shown in the upper half of Fig. 10 for p ¼ 4 and N ¼ 8; 16.
The corresponding errors e found by taking the difference between the solutions obtained by FEDAS–FA
and the FEDAS–IAT algorithms are displayed at the bottom of Fig. 10. The differences are small with the
largest difference occurring between the results from FEDAS–FA and FEDAS–IAT4 at the transition. In

Fig. 11 the solution T obtained by FEDAS–FA with p ¼ 4 and N ¼ 16 at t ¼ 0:317 is shown.

The CPU times for all discretizations and assembly algorithms are displayed in Fig. 12. Most of the CPU

time is consumed during ignition and propagation of the flame front while startup costs are modest. The

difference in running times is small with FEDAS–FA at most 12% faster than the others. The data in the

final rows of Tables 3 and 4 show that FEDAS–IAT4 uses more function evaluations, time steps and

GMRES iterations and restarts than FEDAS–FA when p ¼ 6 and N ¼ 16. Nevertheless it is 6% faster. As
in Example 2, the likely source of these savings is the smaller number of Jacobian assemblies.

In Fig. 13 the memory usage is presented. Preconditioner storage remains relatively constant over the

time interval with no noticeable difference among the assembly routines. For all but FEDAS–IAT4 the
preconditioner takes less storage than its respective Jacobian. Significant differences in the amount of



Fig. 10. The solution T (above) at ð0:25; 0:25; 0:25Þ (first wave) and ð0:75; 0:75; 0:75Þ (second wave) when using FEDAS–FA ð}Þ and
the corresponding differences e (below) between FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ
with p ¼ 4 and N ¼ 8 and 16 in solving Example 3.
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storage needed for the Jacobian exist with FEDAS–FA requiring the most and FEDAS–IAT4 the least.

Near ignition and the beginning of flame front propagation the size of the Jacobian surprisingly decreases

then increases dramatically for FEDAS–IAT7 and slightly for FEDAS–IAT4. With FEDAS–IAT10 a
Fig. 11. The solution T at t ¼ 0:317 when using FEDAS–FA with p ¼ 4 and N ¼ 16 in solving Example 3.



Fig. 12. The CPU time in solving Example 3 with p ¼ 4; 5; 6 and N ¼ 8; 16 using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–
IAT7 ð�Þ and FEDAS–IAT4 ðþÞ.

Table 3

The number of Jacobian assemblies (JAC), function evaluations (FNC) and time steps (TS) used by FEDAS–FA, FEDAS–IAT10,

FEDAS–IAT7 and FEDAS–IAT4 in solving Example 3

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

JAC FNC TS JAC FNC TS JAC FNC TS JAC FNC TS

4 8 34 1477 1180 34 1477 1180 34 1477 1180 37 1444 1126

4 16 24 1825 984 26 1823 987 26 1835 982 31 1378 1119

5 8 33 1583 1160 33 1583 1160 33 1583 1160 33 1502 1155

5 16 26 1826 977 27 1828 984 26 1781 971 32 1771 1047

6 8 27 1846 1275 28 1867 1258 28 1867 1258 25 1693 1081

6 16 27 1597 945 27 1597 945 25 1642 965 23 2218 1027

Table 4

The total number of GMRES iterations (restarts) used by FEDAS–FA, FEDAS–IAT10, FEDAS–IAT7 and FEDAS–IAT4 in solving

Example 3

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

4 8 3520 (0) 3523 (0) 3519 (0) 3416 (0)

4 16 5196 (0) 5191 (0) 5155 (0) 3645 (0)

5 8 5559 (0) 5544 (0) 5555 (0) 5289 (0)

5 16 6507 (0) 6556 (0) 6406 (0) 6786 (0)

6 8 10,671 (31) 11,534 (10) 11,560 (10) 10,772 (8)

6 16 7632 (17) 7631 (17) 7914 (17) 10,551 (29)
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Fig. 13. The size of the arrays for storing the Jacobian (dotted line) and preconditioner (solid line) using FEDAS–FA ð}Þ, FEDAS–
IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ for p ¼ 4; 5; 6 and N ¼ 8; 16 in solving Example 3.
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gradual and permanent decrease in Jacobian size beginning at that time is observed. Currently, I have no

explanation for this behavior.

From Tables 3 and 4 it follows that FA, IAT10 and IAT7 lead to essentially the same performance of

DASPK and GMRES while IAT4 produces notable differences, especially when p ¼ 6. As N increases the
number of time steps and Jacobian assemblies decreases. As p increases the number of GMRES iterations
increases. As in Example 2 there are no GMRES restarts if p < 6. More occur when N ¼ 8 but even in this
case their occurrence is less than (with one small exception) 10% of the number of time steps.

The number of GMRES iterations per time step for p ¼ 6, N ¼ 16, is displayed in Fig. 14. The top graph
plots the data over the whole time interval while the graph on the bottom focuses ½0:28; 0:35
. For all as-
sembly methods the number of iterations oscillates most rapidly during flame front propagation and the

amplitude of the oscillations is relatively large. The oscillations smooth out as the boundary layers are

formed. As in Example 2, the time step behavior is much smoother. These general trends are also observed

for the other discretizations.

Example 4. Consider the Brusselator problem with diffusion [14]

ut ¼ �Duþ 1þ u2v� 4:4u;
vt ¼ �Dvþ 3:4u� u2v; x 2 X � ½0; 1
3; t > 0;

uðx; 0Þ ¼ 0:5þ y þ 0:4zþ 0:5gðyÞ þ 0:02gðzÞ;
vðx; 0Þ ¼ 1:0þ 5xþ 0:25gðxÞ; x 2 X;

ru � nðx; tÞ ¼ rv � nðx; tÞ ¼ 0; x 2 oX:

ð18Þ



Fig. 14. The number of GMRES iterations per time step for FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–
IAT4 ðþÞ with p ¼ 6 and N ¼ 16 in solving Example 3 on ð0; 0:4
 (top) and ½0:28; 0:35
 (bottom).
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The function gðnÞ ¼ tanh20ðn � 1Þ � tanh20ðnÞ serves to enforce continuity between the initial and
boundary conditions. For t large and � small the solution exhibits a time-periodic wave-like solution with
steep fronts rapidly propagating across X. Between the waves are longer periods of quiescence. I solve (18)
on 0 < t6 30. After an initial transient three waves pass through the domain. In the upper portion of Figs.

15 and 16 u, obtained by FEDAS–FA, is plotted as a function of t at x ¼ ð0:25; 0:25; 0:25Þ and
ð0:75; 0:75; 0:75Þ, for p ¼ 5 and N ¼ 8; 16, respectively. The corresponding errors e found by taking the
difference between the solutions obtained by FEDAS–FA and the FEDAS–IAT algorithms are displayed at

the bottom of Figs. 15 and 16. The differences are smaller than in the previous two examples. As in Examples

2 and 3 the errors are larger for the finer discretization and for IAT4. Finally the errors are due to phase (and
not amplitude) differences. This is also true for the other discretizations. The solution u at t ¼ 23:2, obtained
by FEDAS–FA with p ¼ 4 and N ¼ 16, when the wave is in the domain, is shown in Fig. 17.

The CPU times for the all discretizations and codes are shown in Fig. 18. The alternate active and rest
states of the solution (cf. Figs. 15 and 16) can be observed in the stair-step behavior of the CPU time. As in

Example 1 significant time is spent during the initial phase in choosing the optimal temporal order and time

step. The differences in CPU time among the assembly procedures are negligible (under 6% when p > 4).
FEDAS–FA is fastest except for p ¼ 6 and N ¼ 16 when FEDAS–IAT4 is 4% faster. A comparison of

FEDAS–FA and FEDAS–IAT4 in Tables 5 and 6 for this discretization supports the contention that the

difference in CPU time is due to the difference in the number of Jacobian assemblies. This is in line with the

results in Examples 2 and 3.



Fig. 15. The solution u (above) at ð0:25; 0:25; 0:25Þ (left) and ð0:75; 0:75; 0:75Þ (right) for p ¼ 5 and N ¼ 8 when using FEDAS–FA ð}Þ
and the corresponding differences e (below) between FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ
in solving Example 4.
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As in the previous examples, Fig. 19 shows that the size of the preconditioner is independent both of the

solution activity and of the assembly procedure. For all discretizations the size of the Jacobian assembled

using FA, IAT10 and IAT7 is larger than the size of its preconditioner but smaller for FEDAS–IAT4.

Jacobians assembled via IAT4, IAT7 and IAT10 vary in size as the solution changes (smaller during

quiescent periods, larger when a wave is in the domain) although for IAT10 the changes are modest and

only appear when p > 4.
As in Examples 1–3 the data in Tables 5 and 6 bear out the similar performance of DASPK and GMRES

in FEDAS–FA, FEDAS–IAT10 and FEDAS–IAT7. As N increases the number of function evaluations,

time steps and GMRES iterations decreases. The number of Jacobian assemblies also decreases with in-

creasing N for p ¼ 4 and 6. The number of GMRES iterations increases with p. As in Examples 2 and 3
there are no GMRES restarts with p < 6, and as in Example 3, the number of restarts when p ¼ 6 is not
significant.

The number of GMRES iterations per time step when p ¼ 6 and N ¼ 16 for each algorithm is displayed
in Fig. 20. During quiescent periods the number of iterations per step remains fixed and close to the

minimum over many time steps for the three codes FEDAS–FA, FEDAS–IAT10 and FEDAS–IAT7.
When the wave is present in the domain oscillatory behavior is observed. This is also true whenever p > 4.
The number of iterations per step in FEDAS–IAT4 tends to vary rapidly throughout (though not for all

discretizations).



Fig. 16. The solution u (above) at ð0:25; 0:25; 0:25Þ (left) and ð0:75; 0:75; 0:75Þ (right) for p ¼ 5 and N ¼ 16 when using FEDAS–FA
ð}Þ and the corresponding differences e (below) between FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4
ðþÞ in solving Example 4.
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Example 5. Consider the Fitzhugh–Nagumo equation [9]

ut ¼ �Duþ u� u3=3� v; � ¼ 0:1;
vt ¼ 0:1ðu� 1:3vþ 0:1Þ; x 2 X � ½�50; 50
3; t > 0;

uðx; 0Þ ¼
1:67; x 2 R1;

�1:67; x 2 X n R1;

�
vðx; 0Þ ¼

0:3; x 2 R2;

�0:2; x 2 X n R2;

�

ru � nðx; tÞ ¼ 0; x 2 oX;

R1 ¼ fðx; y; zÞ jx < 0; y > 0; z=y < �1:11g;
R2 ¼ fðx; y; zÞ jx < 0; y < 0; z=y > 1:43g:

ð19Þ

The solution is characterized by the formation and expansion of a scroll wave that begins forming on the

boundary of R1 and spreads outward [18]. I solve (19) on 0 < t6 300. Plots of u, obtained from FEDAS–
FA, at ð�25;�25;�25Þ and ð25; 25; 25Þ and corresponding errors e for FEDAS–IAT4, FEDAS–IAT7 and
FEDAS–IAT10 with p ¼ 5; 6 and N ¼ 16 in Figs. 21 and 22 indicate that solution accuracy is not signif-
icantly effected by incomplete assembly. In the case of FEDAS–IAT4, as in the earlier examples, the error

increases slightly as the grid becomes finer and the error is primarily in phase and not amplitude. The scroll
wave at t ¼ 283:0 is seen in Fig. 23.

Plots of the CPU time are presented in Fig. 24. Unlike the previous cases FEDAS–FA is not the fastest

code, in fact it is always slower than FEDAS–IAT10 and FEDAS–IAT7. The CPU time gap grows as p



Fig. 17. The solution u at t ¼ 23:2 when using FEDAS–FA with p ¼ 4 and N ¼ 16 in solving Example 4.
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increases so that on the finest grid they are 16% faster. This phenomenon cannot be explained by per-
formance differences in DASPK or GMRES since the number of Jacobian assemblies, function evaluations,

time steps and GMRES iterations are essentially the same for these three codes (cf. Tables 7 and 8).
Fig. 18. The CPU time in solving Example 4 with p ¼ 4; 5; 6 and N ¼ 8; 16 using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–
IAT7 ð�Þ and FEDAS–IAT4 ðþÞ.



Table 6

The total number of GMRES iterations (restarts) used by FEDAS–FA, FEDAS–IAT10, FEDAS–IAT7 and FEDAS–IAT4 in solving

Example 4

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

4 8 6407 (0) 6406 (0) 6391 (0) 6128 (0)

4 16 6269 (0) 6269 (0) 6017 (0) 5877 (0)

5 8 8215 (0) 8218 (0) 8197 (0) 9178 (0)

5 16 7279 (0) 7279 (0) 7525 (0) 7709 (0)

6 8 14,084 (129) 13,934 (120) 13,950 (124) 20,302 (85)

6 16 9492 (13) 9859 (15) 10,065 (15) 15,627 (13)

Table 5

The number of Jacobian assemblies (JAC), function evaluations (FNC) and time steps (TS) used by FEDAS–FA, FEDAS–IAT10,

FEDAS–IAT7 and FEDAS–IAT4 in solving Example 4

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

JAC FNC TS JAC FNC TS JAC FNC TS JAC FNC TS

4 8 42 2023 1340 42 2023 1340 45 2020 1336 45 1943 1337

4 16 37 1951 1250 37 1951 1250 41 1864 1236 45 1819 1214

5 8 46 1731 1274 46 1731 1274 46 1724 1273 46 1942 1306

5 16 46 1646 1162 46 1646 1162 46 1716 1172 46 1759 1236

6 8 50 1771 1255 49 1753 1251 50 1751 1248 48 2765 1663

6 16 45 1527 1175 45 1554 1182 47 1596 1171 38 2489 1619

Fig. 19. The size of the arrays for storing the Jacobian (dotted line) and preconditioner (solid line) using FEDAS–FA ð}Þ, FEDAS–
IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ for p ¼ 4; 5; 6 and N ¼ 8; 16 in solving Example 4.
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Fig. 20. The number of GMRES iterations per time step using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FE-
DAS–IAT4 ðþÞ for p ¼ 6 and N ¼ 16 in solving Example 4.
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Two factors contribute to the faster times. From Fig. 25 it follows that the Jacobians produced by

FEDAS–IAT10 and FEDAS–IAT7 are significantly smaller than the Jacobians from FEDAS–FA, with the

difference increasing as the discretization becomes finer. The size differences are also more pronounced than
Fig. 21. The solution u (above) at ð�25;�25;�25Þ (left) and ð25; 25; 25Þ (right) for p ¼ 5 and N ¼ 16 when using FEDAS–FA ð}Þ and
the corresponding differences e (below) between FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ in
solving Example 5.



Fig. 22. The solution u (above) at ð�25;�25;�25Þ (left) and ð25; 25; 25Þ (right) for p ¼ 6 and N ¼ 16 when using FEDAS–FA ð}Þ and
the corresponding differences e (below) between FEDAS–FA and FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ in
solving Example 5.

Fig. 23. The solution u at t ¼ 283:0 when using FEDAS–FA with p ¼ 4 and N ¼ 16 in solving Example 5.
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Fig. 24. The CPU time in solving Example 5 with p ¼ 4; 5; 6 and N ¼ 8; 16 using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–
IAT7 ð�Þ and FEDAS–IAT4 ðþÞ.
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those in Examples 3 and 4. As a result the matrix–vector products in FEDAS–IAT10 and FEDAS–IAT7

are more efficient than those in FEDAS–FA. Additionally, since fewer Jacobian assemblies are needed in

comparison with the earlier examples (cf. Tables 1, 3 and 5) the difference in assembly times does not

dominate the overall time.

FEDAS–IAT4 has the slowest times for four of the discretizations and is substantially slower than

FEDAS–FA (by more than 40%) when p ¼ 6. As can be seen in Tables 7 and 8 FEDAS–IAT4 has a
detrimental effect on the performance of DASPK and GMRES when p ¼ 6 in terms of both the number of
Jacobian assemblies, function evaluations and GMRES iterations. The storage savings from IAT4 as

compared with IAT7 and IAT10 are also less substantial in this example, especially on the fine grids.

Jacobian storage for FEDAS–IAT7 grows to match the storage used by FEDAS–IAT10 much sooner
Table 7

The number of Jacobian assemblies (JAC), function evaluations (FNC) and time steps (TS) used by FEDAS–FA, FEDAS–IAT10,

FEDAS–IAT7 and FEDAS–IAT4 in solving Example 5

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

JAC FNC TS JAC FNC TS JAC FNC TS JAC FNC TS

4 8 16 5160 5060 16 5160 5060 16 5160 5060 19 7642 4548

4 16 18 7945 4260 18 7945 4260 18 7945 4260 18 7520 4224

5 8 19 4729 4647 19 4725 4644 19 4725 4644 20 6134 4541

5 16 17 8127 4413 17 8127 4413 17 8127 4413 18 7743 4343

6 8 19 6633 4702 19 5246 4954 19 6644 4702 57 10,023 6216

6 16 17 4950 4735 17 4950 4735 17 5180 4832 32 9752 6166



Table 8

The total number of GMRES iterations (restarts) used by FEDAS–FA, FEDAS–IAT10, FEDAS–IAT7 and FEDAS–IAT4 in solving

Example 5

p N FEDAS–FA FEDAS–IAT10 FEDAS–IAT7 FEDAS–IAT4

4 8 15,424 (0) 15,423 (0) 15,424 (0) 25,859 (0)

4 16 28,714 (0) 28,742 (0) 28,760 (0) 26,762 (0)

5 8 27,446 (0) 27,458 (0) 27,460 (0) 36,880 (0)

5 16 52,868 (0) 52,805 (0) 52,929 (0) 50,112 (0)

6 8 89,046 (6570) 65,029 (4830) 88,970 (6586) 105,355 (4994)

6 16 67,588 (4912) 67,322 (4918) 70,416 (5165) 118,599 (7976)

Fig. 25. The size of the arrays for storing the Jacobian (dotted line) and preconditioner (solid line) using FEDAS–FA ð}Þ, FEDAS–
IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and FEDAS–IAT4 ðþÞ with p ¼ 4; 5; 6 and N ¼ 8; 16 in solving Example 5.
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than FEDAS–IAT4. This may explain the similarity in behavior between FEDAS–IAT10 and FEDAS–

IAT7 and their difference from FEDAS–IAT4.

Preconditioner storage as seen in Fig. 25 remains nearly constant throughout the computation and is

independent of the assembly procedure. More storage is needed to store the Jacobian in FEDAS–FA than
is used by its preconditioner while the opposite is true for the FEDAS–IAT algorithms. From Table 8 it

follows that restarts play an important role in the performance of GMRES for all assembly routines when

p ¼ 6. As in Examples 2–4 the number of GMRES iterations increases with increasing p. The number of
GMRES iterations per step is displayed in Fig. 26 for p ¼ 6 and N ¼ 16 on 0 < t6 300 (top) and on

½170; 180
 (bottom). Over much of the domain the number of iterations per step is fairly constant for
FEDAS–FA and FEDAS–IAT10. FEDAS–IAT7 varies more at the end while FEDAS–IAT4 has larger

oscillations throughout (except for a short initial period).



Fig. 26. The number of GMRES iterations per time step using FEDAS–FA ð}Þ, FEDAS–IAT10 ð�Þ, FEDAS–IAT7 ð�Þ and
FEDAS–IAT4 ðþÞ for p ¼ 6 and N ¼ 16 in solving Example 5 plotted on ð0; 300Þ (top) and ½170; 180
 (bottom).
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5. Conclusions

A new incomplete assembly procedure is presented. The same strategies employed in Saad�s ILUT
preconditioner [20], maximum row fill-in and a threshold parameter are incorporated into a finite element

assembly procedure. The effect of incomplete assembly on a FEMOL code FEDAS [18] is explored for a

suite of reaction–diffusion systems. FEDAS uses DASPK for temporal integration and GMRES with

ILUT preconditioning to solve large linear systems. The factors examined in this study include: accuracy;

CPU time; storage (Jacobian and preconditioner); the number of Jacobian assemblies, function evaluations
and time steps used by DASPK; and the number of iterations and restarts in GMRES.

As expected (cf. Section 3) the code using full assembly (FEDAS–FA) is almost always the fastest al-

though as M, p and N increase the CPU time advantage of FEDAS–FA diminishes. With even finer grids

this advantage may disappear. In two situations one or more of the FEDAS–IAT codes has faster times

than FEDAS–FA: if fewer assemblies are required (Examples 2–4); or if assembly time is not the dominant

cost (Example 5). The former is a function of the convergence criteria in DASPK while the latter is a

function of the problem. In neither case are they easy to predict. Further reductions in CPU time might be

obtained if the band assembly routine of Moore [18] were incorporated into the incomplete assembly al-
gorithm. If the code had been adaptive in space IA and JA would be calculated more often in the full

assembly version which would tend to reduce the time differences between the algorithms even further.

The size of the preconditioner is a function of the discretization and the problem but not a function of

itol or the solution. As a result it would appear that GMRES accounts for changing solution behavior by

varying the number of iterations. This is true even when in Example 3 the preconditioner always uses less
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than 90% of the space available. Further study is needed, however, to determine if increasing pfil or

decreasing ptol would lead to smoother GMRES behavior. For most problems and discretizations the full

assembly Jacobian uses more space than the preconditioner. Incomplete assembly leads to savings for

almost all problems and those savings increased as itol increased and as the grid is refined. Furthermore the

size of the incomplete Jacobians often depends on solution behavior. In some cases the incomplete assembly

Jacobian use less storage than its preconditioner, especially when itol ¼ 10�4. For Example 5 where as-
sembly is not the dominant cost this also leads to faster algorithms when itol ¼ 10�10 and 10�7.
In none of the test problems are significant losses of accuracy observed for the values of itol considered

although the errors tend to grow as the discretization becomes finer with itol ¼ 10�4 and to a lesser extent
with itol ¼ 10�7. Little difference in the operation of DASPK and GMRES exists between FEDAS–FA and
FEDAS–IAT for the two smallest values of itol. However, when itol ¼ 10�4 the performance of both can be
quite different, most notably as p increases. Since the Jacobian matrices tend to become more ill-condi-

tioned as p increases it is not surprising to see the number of GMRES iterations and the size of the pre-

conditioner increase with p.

Within the IAT strategy the size of an entry in the Jacobian is a proxy for the size of the contribution

that entry makes to the matrix–vector product and to the preconditioner. An alternative thresholding
strategy would be to estimate its contribution to the matrix–vector product using the most recent residual

vector from DASPK. If the residual is not changing too rapidly over the period the Jacobian is fixed this

approach might be more effective.

It is likely that similar results can be obtained on unstructured grids with triangular or tetrahedral el-

ements or on grids with adaptive refinement.
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